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Manipulation of photons in a cavity by dispersive atom-field coupling:
Quantum-nondemolition measurements and generation of “Schrodinger cat” states
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A quantum-nondemolition method to measure the number of photons stored in a high-Q cavity, intro-
duced by Brune et al. [Phys. Rev. Lett. 65, 976 (1990)], is described in'deftail. It is based on the detection
of the dispersive phase shift produced by the field on the wave function of nonresonant atoms crossing
the cavity. This shift can be measured by atomic interferometry, using the Ramsey separated-
oscillatory-field method. [The information acquired by detecting a sequence of atoms modifies the field
step by step, until it eventually collapses into a Fock state. At the same time, the field phase undergoes a
diffusive process as a result of the back action of the measurement on the photon-number conjugate vari-
able. Once a Fock state has been generated, its evolution under weak perturbation can be continuously
monitored, revealing quantum jumps between various photon numbers. When applied to an initial
coherent field, the intermediate steps of the measuring sequence produce quantum superpositions of clas-
sical fields, known as “Schrodinger cat states.” Ways to prepare and detect these states in a cavity sub-
jected to a weak relaxation process are discussed. The effects analyzed in this article could realistically
be observed by using circular Rydberg atoms and very high-Q superconducting microwave cavities. The
possibility of photon “manipulation” through nonresonant atom-field interactions opens a domain in
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cavity QED studies.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

The detection of light intensity by usual photocounting
techniques is field destructive. Successive measurements
of the intensity yield different results, as the initial field is
depleted by the continuing measuring process. Methods
to avoid the “back action” of the measurement on the
detected observable have been proposed [1,2] and imple-
mented in the optical domain [3]. These experiments are
the realization of the “quantum-nondemolition” (QND)
schemes introduced in [4]. They rely on nonlinear cou-
pling of the signal field to be measured with a probe field
whose phase is altered by a quantity depending on the
number of photons in the signal beam. The coupling is
generally obtained via some kind of Kerr effect in a solid
or gaseous medium. It requires a relatively intense signal
beam containing a large number of photons. Moreover,
the experiments have been performed so far on propaga-
ting beams, for which a continuous monitoring of the sig-
nal field is difficult to achieve.

We have recently proposed [5,6] a variant of these ex-
periments in which the photons stored in a mode of a mi-
crowave resonant cavity are detected by measuring the
dispersive phase shift experienced by the electric dipole
of nonresonant Rydberg atoms sent one by one through
the cavity. By implementing this quantum-
nondemolition scheme using a “‘dispersive atomic probe”
(DAP-QND), fields with a very small number of photons
could be continuously detected without back action on
the photon number.
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In the DAP-QND method, the measuring “meter” is a
beam of two-level atoms crossing the cavity. Owing to
the simplicity of this system, it is possible to perform
realistic and complete simulations of the measurement,
taking into account the quantum-mechanical randomness
of each atomic detection process. These simulations
show that the information on the field state is acquired
progressively as successive atoms with random velocities
cross the cavity and have their velocity and energy mea-
sured. Several such elementary atomic interaction and
detection processes are required in order to perform a
complete “measuring sequence,” reducing the field into a
Fock state. The collapse of the field into a pure photon-
number state thus appears as a multiple-atom event, en-
tirely calculable, which can be followed in a single reali-
zation of a measuring sequence.

A very important characteristic of the DAP-QND
method resides in the fact that each elementary process
transforms the field state in a way a priori unpredictable,
yet completely known once the atom has been detected.
The interaction of the field with atoms followed by their
detection thus generally constitutes a way to “manipu-
late” quantum fields without altering their energy. Fock
states are not the only interesting nonclassical states
which can be obtained in this way. It is also possible to
prepare so-called “Schrodinger cat” states [7] of the field
which are quantum superpositions of coherent states with
macroscopically different phases or amplitudes [8].
These states can be obtained as a result of a single-atom
interaction and detection process.
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An attractive feature of the DAP-QND method is to
operate on fields “trapped” in a cavity, which remain ac-
cessible to observation for a long time, limited only by
the system relaxation. In this respect, the experiments
considered here are “dual” of those in which light beams
are used to control, manipulate, and detect ions stored in
a trap [9]. In our proposed DAP-QND scheme, the roles
of field and matter are simply exchanged. Atoms are now
used to manipulate and detect the field trapped in the
cavity. Experiments recently performed in ion traps,
such as the detection of quantum jumps [10] or the
demonstration of the quantum Zeno effect [11], could be
performed using the DAP-QND method on microwave
fields stored in the cavity.

In this article, we present a comprehensive description
of the DAP-QND scheme, which completes the qualita-
tive analysis of [5]. We start with a review of QND
methods in general, which allows us to introduce useful
concepts and notations (Sec. II). The QND measurement
of a microwave field using the detection of nonresonant
radiative shifts produced on atoms crossing the cavity is
described in Sec. III. We show that the atomic phase
shifts can be conveniently measured by the Ramsey
method of separated oscillatory fields [12], the cavity be-
ing sandwiched between two interaction zones where the
atoms are subjected to a resonant coupling with an auxili-
ary microwave. Order-of-magnitude estimates on sys-
tems made of Rydberg atoms crossing superconducting
cavities are presented, which show the feasibility of the
method for measuring small fields down to the vacuum.
The mechanism of the measurement and the collapse of
the field into a Fock state are then analyzed in detail and
simulations of experiments in which the number of pho-
tons in the cavity is continuously monitored are described
(Sec. IV). The “back action” of the photon-number mea-
surement, which affects the conjugate observable, i.e., the
phase of the field, is then presented (Sec. V). We show
that the field phase is perturbed essentially because each
Rydberg atom introduced in the cavity acts as a ‘““medi-
um’’ with an index of refraction coupled to the mode dur-
ing the atom-cavity crossing time. As the photon num-
ber gets reduced into a Fock state by successive interac-
tions with nonresonant atoms, the phase of the field gets
scrambled, providing a very direct illustration of phase-
intensity complementarity.

A detailed analysis of the measuring sequence for a
field initially prepared in a coherent state shows that the
first interaction with an atom, followed by the atom
detection, results in the preparation of a “Schrodinger
cat” state, consisting in a superposition of two classical
fields with different phases. The dephasing between the
two components depends upon the atom velocity. Each
component of this “cat” is “split” into two new states
when the second atom is detected, and this process,
which amounts to a phase diffusion, generally goes on un-
til the phase is completely randomized. A notable excep-
tion to the phase randomization occurs when the dephas-
ing produced by successive atoms is fixed and equal either
to 7 or to a simple rational multiple of 7. This implies
the use of monokinetic atoms, with a well-defined veloci-
ty. The field phase shift is then controlled and phase in-
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formation may be built and preserved into the field state,
leading to the possibility of preparing and detecting
stable “Schrodinger cat” states (Sec. VI).

Up to that point, the field mode will be described in the
photon-number state representation. It is convenient, for
simultaneous graphic descriptions of the field phase and
amplitude and also for a simple description of field relax-
ation, to use the Wigner representation of the density ma-
trix. In Sec. VII, we briefly translate the main results of
this paper into this representation and we show how the
Wigner distribution of a ““‘Schrodinger cat” evolves under
relaxation, in various circumstances. Finally, we con-
clude in Sec. VIII by discussing possible applications and
generalizations of this method.

II. REVIEW OF QND (REFS. [2] AND [13))

The purpose of a QND method is to measure a signal
observable Ag of a quantum system S (for example the
energy or photon number of a field) by detecting a change
in an observable Ap of a probe P coupled to S during a
finite measurement time 7, without perturbing the subse-
quent evolution of Ag. The Hamiltonian of the S +P
system during T can be written as

H=H;+Hp+H,, 1)

where Hg, Hp, and H; are, respectively, the Hamiltoni-
ans of S, P, and their mutual interaction. The A; observ-
able (i =S or P) evolves according to

. dAl
ifi dt :[Ai)Hi]+[Ai7HI] . 2
In order to use P for a measurement of Ay, H; must
obviously be a function of 45 and the commutator of 4p
and H; must be different from zero:

OH, #0 3)
3ds
[ Ap,H, 170 . @)

Furthermore, 45 should not be affected by its coupling
to Ap during the measurement:

[ Ag,H,1=0. (5)

After the S-P interaction, the conjugate observable of
Ag, A§, is altered in an uncontrollable way (“back ac-
tion” of the measurement). In order to avoid an uncon-
trollable perturbation on the subsequent evolution of
Ag, Hg should not be a function of A45.

dH,
dAE

=0. (6)

Conditions (3)—(6) define a QND measurement process
[2,13]. Original QND ideas involved a dispersive cou-
pling of the signal field to a material probe [4]. The idea
has appeared unpractical, however, and QND schemes so
far have used probe fields nonlinearly coupled to the sig-
nal via dispersive Kerr-type effects in a nonlinear solid
medium or an atomic vapor [3]. Let us call as,a:;r and
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ap,a ; the annihilation and creation operators for the sig-
nal and probe fields (angular frequencies wg and wp, re-
spectively). In these schemes, a modification of the index
of refraction of the medium, proportional to the number
A S=a§as of signal photons, induces a phase shift of the
probe. This shift produces in turn a change in the ampli-
tude of a quadrature component of the probe:

Ap=(ap—a})/2i , @)

which can be measured by a homodyne method. The
Hamiltonians H; (i =S or P) are

H,=#w,(a]a,+1/2) (8)

and the modified index of refraction corresponds to the
existence of an effective interaction Hamiltonian H; be-
tween the signal and the probe, which can be expressed as

H;=x%a}lapalag , 9)
where ¥* is the Kerr nonlinear susceptibility of the

medium. It is easy to verify that all the QND criteria are
met. The amplitude of A, replicates the variations of the
signal-field photon number without altering it. Physical-
ly, this is due to the fact that the interaction of the signal
with the Kerr medium is nonresonant and thus cannot
change the photon number. Of course the phase of the
signal field (the 4§ observable in this case) is randomly
altered by the measurement.

These QND methods are quite generally based on
dispersive and nonlinear effects. The interaction H; must
be at least quadratic in a; and ag as opposed to the case
of ordinary photodetection processes, where the interac-
tion is linear in these operators. Usually, “high-
intensity” signal fields are required in order to induce ap-
preciable nonlinearities in the medium. This is particu-
larly the case for the schemes using solid materials as a
Kerr medium.

III. QND FIELD MEASUREMENTS BY DETECTION
OF DISPERSIVE ATOMIC PHASE SHIFTS

In the proposed DAP-QND method [5], the probe is
no longer a field but a beam of atoms interacting non-
linearly and nonresonantly with the signal field. In order
to achieve the large nonlinearities required for the
method to be effective in detecting small photon num-
bers, the atoms are prepared into Rydberg states and the
signal field is a microwave nearly resonant with a transi-
tion between adjacent Rydberg levels. Rydberg atoms
coupled to small-size microwave cavities are indeed ideal
systems to obtain strong couplings down to zero photons
[14,15].

A. Radiative shifts of atoms coupled
to the signal field

Three Rydberg levels e, i, and f play a role in the
DAP-QND scheme. A possible configuration of these
levels is shown in Fig. 1. Levels i and f (energies E; and
E) are of the same parity, opposite to the parity of level
e (energy E,). We assume, without loss of generality,
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FIG. 1. Relevant Rydberg levels for the DAP-QND scheme.

that E, > E;. The cavity mode (angular frequency o) is
slightly detuned from the e—i transition [frequency
o, =(E;—E,)/#]. We call § the frequency mismatch:

=0—|w,| , (10)

and Q(r) the vacuum Rabi coupling [15,16] between the
atomic dipole on the e —i transition and the cavity mode.
This coupling depends, through the field spatial distribu-
tion, upon the position r of the atom in the cavity. In the
presence of n photons, the coupling between states e and i
is QV'n (photon absorption) or QV'n +1 (photon emis-
sion). Let us assume that & is large compared to QV'n so
that

O%n/82<<1. (11)

On the other hand, § is taken small compared to the
difference in frequency between the e —i transition and
all the other transitions in the Rydberg atom spectrum
(notably the e — f one). Only levels e and i are then ap-
preciably affected by the nonresonant atom-field cou-
pling, which leaves level f essentially unperturbed.

Let us consider the state |e,n ) of the combined atom-
field system, which represents the atom in level e in the
presence of n photons. A simple perturbative analysis,
valid if condition (11) is fulfilled, shows that |e,n ), whose
unperturbed energy is E, +(n +1/2)#w, experiences the
energy shift

%, (n,1)=#Q(1)n /8 (12a)
if E, <E;, and
%A, (n,1)=—#QXr)(n +1)/8 (12b)

ifE,>E;.

The shifts described by Eq. (12) are quite similar to the
usual “light shifts” observed in atomic systems interact-
ing with nearly resonant light beams [17]. We consider
here, however, the unusual situation in which a single
photon [Eq. (12a)], or even the vacuum field [Eq. (12b)], is
able to produce a measurable effect on the atomic levels.
This is of course due to the large value of the vacuum
Rabi coupling in Rydberg systems (see Sec. III C). For
definiteness, we will consider in the following the E, <E;
case, corresponding to the energy-level configuration of
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Fig. 1, for which Eq. (12a) applies. The important point
of this analysis is that the frequency of the e — f transi-
tion is shifted by an amount proportional to the number
of signal photons.

B. Using an atomic dipole quadrature as a QND probe

Let us now focus on the subspace of the atomic Hilbert
space spanned by the two states e and f. The restriction
H'&P of the atomic Hamiltonian to this subspace can be
expressed as

H{ =#o, DD , (13)

where De“} and D, are “raising” and “lowering” atomic
operators:

=le)(fl, D)=|f)el (14)

(we choose here the energy of the f state to be zero). In
the presence of a cavity field satisfying condition (11),
H/ becomes an “effective” Hamiltonian:

effpye,f) — Qn |
Hat _ﬁ wef+_8'— DefDef . (15)

Consider now the atom (evolving in a superposition of
levels e and f) as the ‘“probe” P used to measure the
signal-field photon number. Noticing that n is the eigen-
value of the agag operator, we can express the effective
S-P coupling in this case as

#Q2
)

Let us define as probe observable the atomic dipole
operator 4,*":

HI asaSDefDef (16)

1 _
A,(,a"=2—l_(De“}~De,) . (17)

During a time interval ¢ the phase of this probe increases
by the amount
Q%n

b
when the signal field contains n» photons. A measurement
of Ap thus constitutes a measurement of n. This mea-
surement obviously satisfies all the QND criteria. This
results from the complete analogy with the Kerr effect
discussed above, the operators D,_,”fL and D,, merely re-
placing the a ; and ap ones.

Ap=o (18)

C. Orders of magnitude

Before analyzing in more detail the procedure that can
be used to detect the phase shift given by Eq. (18), it is
important to discuss its order of magnitude in a favorable
case. Choose for the cavity a cylinder of length L., sus-
taining the TE,,,; mode (this is the field configuration of
micromasers experiments [18]). Let us assume, for
definiteness, that e and i are circular Rydberg levels [19]
of an alkali atom, with principal quantum numbers 50
and 51. The cavity frequency is then close to 51.1 GHz
and its length L, is of the order of 1 cm. In this case [5],
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Q(r=0) (Rabi frequency at cavity center) is 4.2X10°s ™!
We obtain a shift per photon at cavity center:

A, (n=1,r=0)=0%r=0)/8 , (19)

which, for §=10Q(r=0), is equal to 4.2X 10*s~!

Assume that the atom crosses at velocity v, the length
L, of the cavity mode. The accumulated phase shift per
photon € is then

Q%r=0) L.

e=A,(n=1r1)L_ /vy= 25 "
0

; (20)

where the overbar denotes a spatial average of the shift
along the path of the atom. €(r) varying as a sine arch
in this mode, this average amounts to dividing by 2 the
shift at the cavity center. We find that the accumulated
shift per photon is equal to 7 for v,=70 m/s. Such a ve-
locity can be easily obtained by laser-cooling techniques
of an atomic beam [20]. Large phase shifts per photon
may thus be obtained with this realistic system. Obvious-
ly, we have considered here circular Rydberg atoms be-
cause the requirement of long radiative lifetimes is impor-
tant [19]. The atoms must cross the cavity in a time of
the order of 10™# s without appreciably decaying towards
more bound atomic energy levels, thus precluding the use
of ordinary low-angular-momentum Rydberg atoms for
this experiment.

A large € value is obtained by choosing a relatively
small detuning 8. The detuning, however, must be a few
times larger than the Rabi frequency QV'n correspond-
ing to the field we intend to measure. Smaller 6 values
should be avoided because they would result in an appre-
ciable transition probability from level e to i during the
atom-cavity coupling time, i.e., in a change of the photon
number in the cavity. In other words, we have implicitly
assumed in the above analysis that, as the atom crosses a
cavity with n photons, the atom-field coupling is switched
on and off adiabatically, so that an atom introduced in
level e leaves the cavity in the same state, without chang-
ing the photon number. If § becomes too small, this adia-
batic condition is bound to break down and the system
initially prepared in e may end up in level i, after having
absorbed one photon from the field. It is simple to com-
pute numerically the system evolution for an arbitrary
detuning 8. The calculation must take into account the
variation of the coupling Q as a function of time, which
reflects the fact that the atom is flying across a position-
dependent cavity mode. We have performed such calcu-
lations for §=30QVn and checked that the e —i transi-
tion probability remains smaller than 10~ 4. which vali-
dates the adiabatic approximation for this problem.

We must stress that the smooth variation of the field
mode amplitude along the path of the atoms is an impor-
tant feature of this experiment. For a square-shaped
mode corresponding to a sudden switching on and off of
the atom-field coupling, the e —i transition probability
for the same & value is 10™!, precluding the use of such
modes for an efficient QND field-detection scheme.
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D. Detection of the atomic phase
by the Ramsey method

The simplest way to detect the dephasing accumulated
between the states e and f when the atoms cross the
mode is obviously the Ramsey method of separated oscil-
latory fields [12]. The experimental scheme is shown in
Fig. 2. Before entering the cavity, each atom is prepared
by laser excitation and microwave transfers [19] into the
circular Rydberg level e. It then interacts in a first zone
R, in front of the cavity with an auxiliary microwave
field, tuned at a frequency w,, resonant or quasiresonant
with the e — f transition. The atom leaves this zone in a
linear superposition of levels e and f. It then crosses the
cavity and interacts downstream with a second auxiliary
field, identical to the first one, in zone R,. The distance
between the two zones is L > L_. In the absence of pho-
tons in the cavity, the phase difference between the atom-
ic dipole and the auxiliary “Ramsey field” reference is,
for an atom with velocity v,

@o=(0, — )L /vg . (21)

In the presence of n photons in the cavity, this phase
difference becomes

@p=@o—NE . (22)

To read @, out, we analyze the state of the atom down-
stream, after zone R,. If an atom with velocity v crosses
the cavity containing n photons, the system ends up in
the superposition state:

|Whed+atom) = b (n,v;@g,€)le,n )
+bs(n,v;@p€)f,n) (23)

with the amplitudes b, and b given, in interaction repre-
sentation, by

. = —i@gvy /v 27”)0 i vg/v . 2‘”'”0
be(n,v;pg€)=e cos’— e sin’—~ |,
(24a)
m ;
bf(n,v;‘l’o,f):—%sinz—vo(l-i-e Pnvo vy (24b)
Lasers+ .
asers Cavity
microwaves
’" I ( , I IC. g
Rl Lc R2
L

FIG. 2. Schematics of the DAP-QND experiment. The
atoms of the beam B are excited by lasers and microwave
transfers into the circular Rydberg state e, cross zone R, the
cavity, and zone R, before their state (e or f) and velocity v are
determined by the field ionization counter I.C.
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These equations are derived in the Appendix, under the
assumption that | w,—wefl is much smaller than the re-
ciprocal of the time spent by the atom in each Ramsey
zone. Similar equations have been discussed in [21]. We
have assumed that an atom with velocity v, undergoes an
exact 7/2 pulse in each Ramsey zone. The v, /v factors
in Egs. (24) account for the velocity dependence of the
cavity crossing time. Note in Eq. (23) that the photon
number is not changed by the nonresonant interaction.

The atoms are detected after zone R, by a field-
ionization detector (I.C. in Fig. 2), which discriminates
between levels e and f. By pulsing the laser excitation
and measuring the arrival time of the atoms in the detec-
tor, it is also possible to determine their velocity v. The
probability I1,(n,v;@o,€) [IT,(n,v ;@0 €)] of detecting in
level f(e) an atom having crossed with velocity v the
cavity containing n photons is

I (n,v;@0,€)=1—TL,(n,v;@,,€)=b,(n,v;pg€)|?

my

2v

Vo
¢n 2U

-

2 cos®

=sin . (25)

I ;(n,v;@q,€) is a periodic function of ¢, exhibiting a
characteristic pattern of fringes whose spacing depends
upon v. It appears equivalently as an oscillating function
of @, (i.e., of the Ramsey field frequency w, ) for a given n
or as an oscillating function of » for a given ¢, (»,). For
a field with a photon-number distribution p (n), the tran-
sition probability is defined as

My(p(n)v;pp€)=3 p(n)i(n,v;pye€) . (26)

For a fixed ¢, the above expression appears as a weight-
ed sum over n of identical fringe patterns translated by
ne.

Next, consider the transition rate averaged over a
Maxwellian atomic velocity distribution D(v) (thermal
beam of atoms with mean velocity equal to vy). For each
n value, we obtain a velocity-averaged probability:

Hf(n;tpo,e)=ffD(v)Hf(v,n;cpo,e)dv . 27

The variation of Il;(n;@,,€) versus @, for n fixed is
represented in Fig. 3(a). Only the central fringe centered
around @,—ne=0 survives the velocity averaging and
the probability exhibits a single sharp feature whose posi-
tion is characteristic of the photon number (the figure

- | (a) 0 3 (b 03 (o
< Vo Vo
% AARAAAA AAAAAAA
= vvyyvy Vyyvvvw
=

¢, (rad) ¢, (rad) ¢, (rad)

FIG. 3. Transition probability from e to f vs @, for e=27
averaged over the atomic velocity distribution. (a) Field in a
Fock state; (b) coherent field; (c) thermal field. Mean photon
number in all traces: 7i=3. Arrows indicate values ¢y,=ne for
n =0 and 3. In each part, the horizontal scale is from — 67 to

+ 187 and the vertical scale is from O to 1.
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corresponds to n =3 and the fringe position for an empty
cavity is shown by an arrow; the spectrum in the figure is
computed with e=27). Let us finally give the averaged
probability for a thermal atomic beam interacting with a
cavity field in a state described by a photon-number dis-
tribution p (n):

Hf(p(n);<po,6):2p(n)ﬂf(n 3P0 €)

= [ dv D) (p(n),v;@0.€) . (28)

I (p(n);@p€) is a superposition of single photon
features, weighted by the corresponding photon-number
probabilities. The variations of I1,(p (n);@o,€) versus @,
for a coherent and a thermal field [Poisson or exponential
p (n) distributions, respectively] are shown in Figs. 3(b)
and 3(c). As noticed in [5], we see that the shape of the
fringe pattern allows us to distinguish easily a coherent
from a thermal or a Fock state with the same mean ener-
gy. In order to determine Il ;(p (n); @y, €), we must detect
a sequence of atoms for each value of ¢, and determine
the mean e — f transfer rate. This implies that the field is
prepared in the same initial state, corresponding to p (n),
before each atom crosses the cavity. In a real experi-
ment, this means that the field has the time to relax back
to an equilibrium state between consecutive atoms, with
negligible damping, however, during the time L,/v
(“moderate” Q cavity fed by a stationary microwave
source). In practice, the recording with an acceptable
signal-to-noise ratio of the curves shown in Fig. 3 would
imply the detection of about 10° atoms. Note that this
experiment does not require any control of the atomic ve-
locity. On the contrary, the dispersion of atomic veloci-
ties helps, since it makes it easy to determine the center
fringe for each photon number n.

E. Intepretation in terms
of an atomic interference process

The separated oscillatory field method just described
may be conveniently described as an atomic interference
process. The probability amplitude b(n,v;@q€) of
finding in level f an atom initially prepared in e is the
sum of two terms which can be symbolized by the dia-
grams shown in Fig. 4. The atom may be transferred
from e to f either in the first Ramsey zone [Fig. 4(a)] or
in the second one [Fig. 4(b)]. In the latter case, its propa-
gator is phase shifted by the angle ¢, v, /v, which corre-
sponds to the exp(ig,v,/v) term in parentheses in Eq.
(24b). In the path corresponding to Fig. 4(a), on the oth-
er hand, the cavity field has no effect on the propagator,
since the atom in level f is not appreciably coupled to the
field [term 1 in the parentheses in Eq. (24b)]. The
1 (n,v ;@ €) transition probability is the squared sum of
the partial amplitudes associated to these two diagrams
and the fringe pattern exhibited by Eq. (25) corresponds
to their product. In other words, the atom has been
prepared in zone R, in a coherent superposition of two
states, one that ‘“feels” the cavity field and another that
does not. When the atom is finally measured in level f or
e, it is not possible to tell through which channel the sys-
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(a) ¢ (b) .

R, VA NV
f e

R, "\ AVAVAVAY
e e

FIG. 4. Diagrams illustrating the interfering transition am-
plitudes in the Ramsey experiment. (a) The atom undergoes a
transition in R, and crosses the cavity in state f. (b) The atom
crosses the cavity in state e and undergoes the e — f transition
inR,.

tem has evolved and the resulting detection probability
reveals the corresponding quantum interference under
the form of a Ramsey fringe pattern. We thus propose
here using a matter interference effect in order to study
the properties of a field, in a way quite similar to more
usual interfering schemes in which light interference phe-
nomena are used to determine the properties of a materi-
al retarding plate. There is, for example, a striking analo-
gy with the birefringence phenomenon in optics: a linear-
ly polarized photon whose electric field is initially at 45°
from the axis of a birefringent plate is the linear superpo-
sition of photons polarized along the slow and fast axis.
The photon propagator through the plate is the sum of
two amplitudes dephased by different amounts propor-
tional to the plate thickness /. As a result, the probability
of detecting the photon with a given polarization after
transmission is an oscillating function of / and this pa-
rameter can easily be deduced from the characteristics of
this function. In our proposal, the roles of the field and
matter are simply exchanged and the “length” of the re-
tarding plate is replaced by the intensity of the cavity
field. Note also that in both cases the matter-field in-
teraction is not resonant: the usual retarding plate is a
transparent medium that does not “heat.” To take the
analogy further, we can remark that if the plate did ab-
sorb energy, it would expand and / would change, result-
ing in a trivial “back action” of the measuring process on
the observed quantity. The analogy cannot be carried too
far: in usual interferometric experiments, the measured
quantity (optical length of a plate) is essentially classical,
whereas in the DAP-QND scheme the observed “object”
is inherently quantum: the cavity field, especially if the
number of photons is small, exhibits large fluctuations
and is transformed in a fundamentally random way by
the measuring process. This leads to interesting conse-
quences in experiments in which we use the atoms to
monitor continuously the field, as discussed in the next
section.

IV. CONTINUOUS QND MEASUREMENTS
OF THE PHOTON NUMBER

We have described an experiment performed on an en-
semble of identical realizations of a field. More interest-
ingly, the same apparatus can also be used to perform a
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quantum-mechanical measurement of the field photon
number, on a single realization of this system.

A. Simple analysis: Evolution
of a “pure state” field

Let us assume that the field in the cavity is described
by a “pure” superposition of photon number states,
which, in interaction representation, is

W)= c,ln) . (29)

As an example of such a field, let us mention the
coherent Glauber state [22] corresponding to a complex
amplitude a, with ¢, coefficients given by

—lal?/2,n
_e a
v (30

After interaction with an atom with velocity v, the
state of the atom-field system is readily obtained by su-
perposition of Eq. (23) type solutions:

|@ificldtatom)) =5 3 ¢, b,(v,n;90€)a,n) . 31)
n a
a=ef

This is obviously an entangled state which cannot be
expressed as a product of atom and field contributions:
the nonresonant atom-field interaction builds strong
correlations between the two parts of the coupled subsys-
tems.

According to the postulates of a quantum measure-
ment, the detection of the atom in level a (a =e or f) pro-
jects this state into 3, ¢, b, (n,v;@,€)la,n ), resulting in
the system ‘“disentanglement” and the collapse of the
field into a coherent superposition of Fock states with

atom detected in f:

y 0 24
Y n 24
atom detected in e:

0 n 24

P(n)
:

P(n)

P(n)

(a) (b) (e)

FIG. 5. Illustration of the basics of the DAP-QND method,
showing the transformation of the photon-number distribution
produced by a single atom detection event. The initial distribu-
tion, displayed in (a), is a Poisson law with 7=10. It is multi-
plied by the oscillating fringe function |b,(n,v;@ne€)l?
represented vs n in (b), for both the f and e detection outcomes
(v =v0,pp=0,6e=m/2). In the resulting distributions (c), pho-
ton numbers closest to the “dark fringes” have been decimated.
The patterns obtained after detection of the atom in f and e are
“complementary.”
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amplitudes given within a normalization factor by
¢, b, (n,v;@p€). The photon-number distribution is thus
essentially multiplied by an oscillating function of n,
|b,(n,v;@e€)|>. We show in Fig. 5 how the photon-
number distribution is transformed after detection of an
atom in state f or e. The photon numbers for which the
fringe function is closest to zero are efficiently decimated,
since the measurement process gives us an information
“incompatible” with these numbers. This decimation
process is at the heart of the QND scheme studied in this
article: if the process is repeated on the same field with a
succession of atoms having different velocities, which are
detected randomly in levels e or f according to the corre-
sponding quantum-mechanical probabilities, other pho-
ton numbers are suppressed and we conceive easily that
the decimation goes on until only one photon number is
left. The field state is finally projected on an intensity
eigenstate, even though no energy has been exchanged
between the atoms and the field. The change in the field
photon probability distribution has been achieved only
through a dissipation free “information-gathering” pro-
cess, which appears as a perfect quantum measurement of
the field intensity.

This analysis, which contains the essence of our
method, is only qualitative. It does not describe the mea-
surement effects on an incoherent field, such as a thermal
field, for which a “pure state” description is inadequate.
Even for an initially “pure state,” the above approach is
incomplete because it cannot account for interactions
with undetected atoms whose effect is, as discussed
below, to transform the pure state into a statistical mix-
ture. Also, it is not adapted to describe field relaxation
which, in a real cavity, adds its effect to the
measurement-induced processes. For a quantitative
description of the method, we have to adopt a density-
matrix description.

B. Evolution of the field density operator
under continuous atomic detection

Assume that a field has been prepared in a state de-
scribed by a density matrix p, inside a cavity whose Q
factor is first supposed to be infinite. A sequence of
atoms is sent through the cavity. The velocity and the
quantum state of each atom are determined by the atomic
detector I.C. To account for finite detection efficiency,
we also allow for some “unread” events in which the
atomic internal energy and velocity are not measured. As
in other similar problems dealing with continuous photo-
detection [23,24], each atom measurement provides infor-
mation on the cavity field and changes the field density
operator, p, becoming p, after the first atom - - - p, after
the kth atom. The state of the atom-field system at the
entry of atom k +1 is described by the total density

operator p(kﬁeld+atom):
p(kﬁeld+atom)= 2 |e,n )pk;n,n’<e’n’| s (32)

n,n'

which, after the coherent evolution of the atom-field sys-
tem, becomes
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pisiraem =3 [b,(n,v;@p€)le,n ) +b(n,v;90,€)|fsn) 1oy n

n,n'

X[{e,n'|bF(n',v;@p,€)+{fin'|bf(n',v;pp€)] , (33)

with the b, and b, amplitudes given by Egs. (24). If the
atom is detected in level a (a =e, f) with velocity v, the
total system density operator collapses into the subspace
projecting on the diadics |a,n ){a,n’| and the field densi-
ty matrix become

by (n,v;@0,€)b; (n',0;p0,€)

2 [ba("’v§¢’o’e)|2Pk;n,n

n

(a,v)
Pk +1;n,n’

Pk;nn’ - (34)

The denominator in this expression ensures the nor-
malization of the trace of the corresponding matrix. It
also has a very simple physical interpretation. It is pre-
cisely the probability II,(p,(n),v;@y€) that the atom
with velocity v is found in state a after it interacts with a
field having a photon-number distribution p,(n)=py., ,.
We thus find the remarkably simple result

_ b,(n,v;@,€)b)(n',v;@0€)
I, (pr(n),v;@p€)

(a,v)
Pk +1;n,n’

pk;n,n’ . (35)

If only the atomic velocity is measured but not the
atomic energy, the field density operator is the weighted
average of the results corresponding to the e and f out-
comes:

ps:iv.z,,,,,:l RAEY

a=ef

Xbl(n',v;00,€) |Pr.nn - (36)

Finally, if the atomic velocity also remains undetected,
the field density operator becomes

A= 0200 3 butninne
a=ef

Xb:(n'7v;¢0’e) Pk;nn’' -

(37

C. Field collapse into a Fock state

Equations (35)-(37) summarize the effect on the field
density operator of any possible atomic event. If we are
interested only in the field photon-number distribution
p(n)=p, ,, we merely have to particularize these equa-
tions for the field density-matrix diagonal elements.
Combining Egs. (35) with (25), we find that p,(n) is mul-
tiplied by II,(n,v;@q,€)/I1,(p;(n),v;@y,€) if the atom is
detected in level a with velocity v. If the atomic energy is
not measured, Eq. (36) combined with the identity
I, (n,v;@q,€)+ 1 (n,v;p5,€)=1 shows that p;(n) is not
altered at all, whether the atomic velocity is measured or
not. These results are summarized by the following equa-
tions:

I, (n,v;@p€)

(a,v) —
Peitn) Ha(pk(n%v;%,e)p"(n) ’ (38)
P () =p|Y (m)=py (n) . (39)

Note that, even if no photon is exchanged between the
field and the “measuring” atoms, the mere fact that infor-
mation is acquired on the field has, in general, the effect
of modifying its photon distribution. However, no
change in this distribution occurs if the field is in a well-
defined Fock state, i.e., if p,(n)=8(n —n;). Equation
(26) then shows that II,(p,(n),v ;@ €)=II,(n;,v;@y€)
and Eq. (38) entails that a measurement of the atom in
level a does not modify p, (n) in this case. This is typical
of a QND process: if the system is in a Fock state, this
state must, in the absence of relaxation, remain stable for-
ever. The fact that an unread atom does not change the
photon distribution [Eq. (39)] is also characteristic of the
QND nature of the process. It is instructive to compare
these results with those obtained in papers discussing the
continuous monitoring of a micromaser [23] or, more
generally, models describing the continuous measurement
of photons by a sequence of photodetection processes
[24]. In these cases, Fock states are generally altered by
an atomic detection event. Furthermore, even an unread
atom modifies in general the field energy in the cavity and
thus changes the photon-number distribution.

The above discussion leads directly to a simple recipe
[5] to simulate with a computer a continuous QND mea-
surement of the field, initially in a state corresponding to
the photon-number distribution py(n). We first draw a
random velocity v, and compute I1(po(n),v,;@g,€) from
Eq. (26). We then decide the outcome a of the first f/e
measurement by comparing this probability to a random
number between O and 1. We next multiply py(n) by
M,(n,v,;p€) and we normalize by dividing by
I, (po(n),vy;¢0€). This yields p;(n). We then draw a
second velocity v,, compute IT (p;(n),v,;@o,€) from Eq.
(26), and so on. In this way we generate p,(n) * - - p;(n).
The computer generates for each sequence of k detected
atoms a set of {a,,v,] values (1<p <k). We call this set
a “k-atom measuring sequence.” It is easy to show by
iteration that such a measuring sequence corresponds to
the final photon-number distribution:

Hn;iay,v,})po(n)
pk(n)= ’ ’
S poln’)F(n';{a,,v,})

(40)

with
Fnslayv, )= 1 N, (n,0,;@0,€) . (41)
p=1k F
This result has been obtained in [S] by a simple proba-

bilistic argument.
Simulations of such continuous field measurements
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have been carried out for various ¢, and € values. The
initial field can be either coherent or thermal, or de-
scribed by a flat distribution of n values, ranging from
zero to a few tens. Quite generally, p, (n) is found to con-
verge towards a distribution representing a Fock state
somewhere within the width of the initial p,(n) distribu-
tion. Figure 6 shows an example of such a measuring se-
quence. The initial photon-number distribution corre-
sponds to a coherent state with 7 =5 [Fig. 6(a)]. Figures
6(b)-6(f) show the distribution p,(n) for k =1, 3, 6, 10,
and 15. The field ends up in this case into the » =3 Fock
state. Another simulation converges into another Fock
state, after a number of atoms of the same order. The re-
sult of a given measuring sequence is unpredictable, and
we have checked that the statistics of an ensemble of such
simulations carried out on the same initial field repro-
duces the photon distribution py(n).

The mechanism of the gradual field collapse into a
Fock state has already been briefly discussed for a simple
“pure state field” in Sec. IV A. The process is the same
for a field described by a density matrix. Let us analyze it
in more detail here. Each atomic detection results in
multiplying p(n) by a function of n which exhibits a
fringelike structure, with periodic minima whose posi-
tions change with the atomic velocity. As successive
atoms with random velocities pass through the cavity and
are detected, the iterative product F(n;{a,,v,}) evolves
after a few steps into a complicated oscillating function of
n. As more atoms are detected, only isolated peaks sur-
vive in F(n;{a,,v,}), with an average spacing between
peaks dn({a,,v,}). This spacing increases rapidly with

¢y

(e)

Photon number distribution

(d)

T
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I I (b)
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10 20
Photon number

FIG. 6. Evolution of the photon-number distribution in a
QND sequence. The initial state is coherent with #=5 (a).
Traces (b)-(f) correspond to the detection of 1, 3, 6, 10, and 15
atoms, respectively. In this realization, the field finally collapses
in the n =3 Fock state.
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the number of atoms k in the sequence. The reduction
into a Fock state is effective when 8n({ap,vp}) exceeds
A(n), the photon-number dispersion in the initial field.
Practically, with fields having an average photon-number
fluctuation of the order of 5, this requires atomic samples
with k of the order of 10 to 15 (see Fig. 6). Let us note
again that as soon as only one photon number is left, this
number remains stable thereafter, at least in the absence
of any other cause of evolution such as relaxation (see
Sec. IV D). Note also that “unread” atoms, which do not
modify p (n), have no effect on this process.

Statistics performed on a large set of simulations show
that the average “size” k of the measuring sequence re-
quired to reduce the field to a Fock state increases loga-
rithmically with the photon-number dispersion in the ini-
tial field. We have assumed a total indeterminacy in the
initial photon number, from O to a value n,,. The simu-
lations have been performed for e=m, ¢y=0, and a
thermal velocity distribution. Figure 7 represents the
average number of atoms required to produce a Fock
state with a 99% probability, as a function of n,,. Con-
sistently with Fig. 6, k is of the order of 20 for n,, =10.
About 50 atoms are required, on the average, to “pin
down” a field with a A(n)=500 photon-number disper-
sion.

We have also studied the variations of the average
“size” k of the measuring sequence as a function of €, the
results being shown in Fig. 8. The simulations have been
performed with a flat photon-number distribution, from 0
to n,, =10. Not surprisingly, k diverges for e—0.
More interestingly, k becomes practically constant when
€>0.27, i.e., as soon as n, € is of the order of 27. In
other words, the method converges optimally as soon as
the Ramsey fringe function varies from O to 1 within the
width of the initial photon-number distribution. The
fringe signal then provides the best possible discrimina-
tion between different n values.

We have considered so far the case where the atoms
have random velocities, with a dispersion described by
the thermal Maxwellian distribution D(v). Let us stress
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FIG. 7. Average number k of atoms in a measuring sequence,
vs the initial photon number dispersion n,,, in a semilog plot.
The simulations are performed with e= and a thermal veloci-
ty distribution. Each box is the average of 100 simulations and
the line is a best fit.
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FIG. 8. Average number k of atoms in a measuring sequence,
vs €, for n,, =10. A thermal velocity distribution is assumed.

again the fact that this dispersion is an asset for the
method, which ensures a relatively fast decimation of
different photon numbers. Similar simulations show that,
if the atomic beam is monokinetic, the field collapse may
require a much larger atom number, or even never hap-
pen if € is a rational multiple of 277. This point will be
discussed below, when we describe the field phase evolu-
tion (Sec. V).

Finally, a faster convergence of the ¥ function towards
a 6-like distribution of n may be obtained if the atomic
velocity can be actively controlled and adjusted to pro-
vide for an efficient decimation of preset n values at each
step of the process. The procedure may also be modified
by changing between atoms the Ramsey fields frequency
(i.e., @) or even the phase shift per photon €, which can
be controlled by adjusting the detuning & between the
e —I atomic transition and the cavity field. We will not
consider in detail here the various strategies which can be
designed in order to converge as fast as possible towards
a Fock state. Let us only mention that the minimum
number of atoms required to ensure the field collapse can-
not be smaller than log,[A(n)]. This result has a simple
interpretation in terms of “information theory.” Since
each atom yields a binary information (atom found in e or
f), the number k of atoms necessary to “pin down” the
field should at least be such that 2*=A(n).

In a real field measurement, the {ap,vp} sequence
would be measured, but p,(n) would be by definition un-
known. We will assume, however, that we could safely
place an upper limit n,,, to the cavity field photon num-
ber (this requirement being not very restrictive since it is
realistic to assume that we could have a rough idea of the
field energy). According to the above analysis, we know
that, after a number of atoms depending logarithmically
On 1.y, Hnjfa,,v,}) would converge in the [0,n,,,] in-
terval towards a 8-like function, whose position depends
only upon the {a,,v,} sequence. We thus conclude that a
computer interfaced to the atomic detector, which can
compute the F function in real time, would provide an
unambiguous photon-number value in the [0,7n,,, ] inter-
val, even though p,(n) is uncertain, which is a basic re-
quirement for a true measurement. Of course, the
““a priori probability” that a given sequence will be ob-
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tained depends on py(n). Actually, this experiment
would allow us also to determine this distribution, pro-
vided we could reproduce the initial state at will and per-
form a photon-number determination on each field reali-
zation.

D. Monitoring Fock state evolution
under weak relaxation

We have assumed so far that the relaxation of the field
is negligible (infinite Q cavity). The above calculations
can be generalized in a straightforward way to a cavity
with a finite field damping time ¢_,, coupled to a thermal
reservoir at temperature 7. The field density-matrix re-
laxation is described by a temperature-dependent Liou-
ville operator A defined as [14,15]

d
—d% =—App= -—;—(nb +1 )[a;as,p]++K(nb +1 )aSpa;r
—%nb[asa;,ph-i-;cnba;pas , (42)

where k=w/Q =1/t is the cavity-damping rate and n,

is the average number of thermal photons in the mode at

temperature T. The irreversible evolution of p during a
time interval 8¢ between two consecutive atoms is

—Apdt

p(t +8t)=e p(t)=(1—Agbt)p(t) . (43)

In order to take relaxation into account in the simula-

tion of a continuous measurement, the density operator

py obtained after detection of atom k is merely replaced

-AF& . .

by e py. before applying the reduction procedure cor-
responding to the detection of atom k + 1. This calcula-
tion describes situations where the time intervals when
the cavity is empty are much longer than the times when
it contains an atom. If it is not the case, one should in
principle describe the combined effects of relaxation and
coherent atom-field coupling during the time an atom in-
teracts with the mode. This would considerably compli-
cate the analysis leading to Egs. (35) and (38).

The procedure we have outlined above avoids this
difficulty by assuming a fictitious relaxation process
affecting the field only between atoms and occurring with
a rate k'=« /7, where 7 is the fraction of time during
which the cavity is empty. Clearly this fictitious relaxa-
tion process is equivalent to the real one as long as Eq.
(43) can be linearized, i.e., as long as the time between
atoms is very short compared to ¢.,,. In the presence of
relaxation, the reduction of the field into a Fock state will
be observable provided a measuring sequence can be per-
formed in a time short compared to the Fock state “life-
time,” which is known to be of the order of 7, /n
[25,26].

Since €=0.27 can be achieved with v,=350 m/s cor-
responding to an atom-cavity interaction time L.,/
vo=3X107° s, a measuring sequence of 20 detected
atoms takes about 10> s. The state reduction for fields
with n around 10 should thus be observable with cavities
having a damping time 7_,, 2107 % s, i.e., a Q factor at 50
GHz larger than 3X10°. In fact, Q =3X10'° has been
achieved at 21 GHz in a superconducting cavity cooled
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5000

FIG. 9. Photon-number evolution in a simulation of a con-
tinuously monitored thermal field coupled into a slowly relaxing
cavity (7=3,¢,=0.15m,e=m). The “measured” photon num-
ber (vertical axis) is plotted against the number of detected
atoms. The total time scale corresponds to the passage of 5000
atoms and the relaxation time to 2500.

0 number of atoms

at 0.5 K [27] and Q factors of the order of 10'° are realis-
tic at 50 GHz. The QND method using circular Rydberg
atoms has thus the potential time resolution required to
detect the evolution of small photon number fields.

Figure 9 represents the result of a simulation of a con-
tinuously monitored thermal field coupled into a slowly
relaxing cavity. The number of photons is represented as
a function of the number of detected atoms. The cavity
relaxation time corresponds to the passage of 2500 atoms.
The average photon number is 7 =3, but the actually
measured number fluctuates from zero to seven, the field
spending in each state a time proportional to its station-
ary probability. Quantum jumps are visible as the photon
number suddenly switches from one value to the next.

Figure 10 shows the decay of a continuously monitored
field in a cavity at 7 =0 K. The field is initially in the
n =8 Fock state. The horizontal time scale corresponds
this time to the detection of 2000 atoms and the cavity-
damping time to 1000. The field intensity exhibits jumps
at random times between decreasing photon numbers, un-
til it eventually reaches zero. The usual exponential de-
cay is recovered by ensemble averages of such realiza-
tions.

V. BACK ACTION OF THE DAP-QND
MEASUREMENT ON THE FIELD PHASE

As atoms crossing the cavity are detected one after
another and the photon number in the cavity gets re-
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FIG. 10. Photon-number evolution in a simulation of a con-
tinuously monitored relaxing field at 7 =0 K. The initial field
is the n =8 Fock state. The horizontal scale is the number of
detected atoms. Cavity relaxation time corresponds to 1000
atoms (@, =0.15m,e=m).
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duced to a single value, we expect the phase of the field to
be strongly perturbed, until it gets completely random-
ized in the final Fock state. In other words, the back ac-
tion of the measuring process affects the field phase,
which is the conjugate observable of the photon number.
Moreover, even the interactions with “unread” atoms,
which have no effect on the photon number distribution,
do perturb the field phase. The phase diffusion can be
studied by the same kind of numerical simulation as done
for the photon distribution. We must now make use of
the general recursion relations (35)-(37) with b, and b,
given by Egs. (24) and study the time evolution of off-
diagonal matrix elements of the field density operator
(n'=n +1 yields the evolution of the field amplitude).
The numerical procedure is straightforward, but it is also
useful to get some physical insight by discussing first sim-
ple situations lending themselves to analytical considera-
tions.

A. Evolution of p, ,-: Analytical considerations

Using Egs. (24) and (34), the following recursion rela-
tions are obtained for p, ,» when v =v, (atom undergoing
a 7/2 pulse in each Ramsey zone):

(o) (1xe ™ )(1xe )
Pk +1;nn ig, 12
E pk;n,n I l*e |
n

Pk;n,n' > (44)

(a?,v,)

ilp, —@,)
pk+1;n,n'=%(1+e n = On )pk;n,n’ . (45)

In Eq. (44), the + and — signs correspond, respectively,
to the detection of the atom k +1 in level f or e. These
equations have been derived in a slightly different form in
[21]. We immediately see that detecting an atom in level
e or f, as well as not detecting the atom at all, generally
results in an alteration of the signal-field coherence. The
evolution of the field is quite different, however, depend-
ing on whether the atomic state is measured or not.
Thus, if the field is initially in a pure state, and all succes-
sive atoms are detected in either the state |e ) or the state
| f), the field remains in a pure state, obtained after each
measurement by applying the corresponding projection
operator (le){e| or |f){f|) to the state just before
detection. This can also be seen directly from Eq. (44): if
Pk;:n n 18 factorizable as a function of n times a function
of n’, the same is true for p(ki;u]‘;’,),,".. On the other hand, if
the state of the atom is not determined, then the field
evolves, in general, into a statistical mixture. Indeed, so
long as € is not a multiple of 7, we have
(a?,v) |2

Trpi 1= lpk +1;n,n’

n,n’

=3 cos’[e(n —n")]lpj.p | <Trpt , (46)

nn'

an inequality that is the signature of the statistical nature
of p; +,. The following inequality is also satisfied:

(a?,vy)
|Pk+l;n,n +1l < ok mn+1l » 47)

which means that the magnitude of the average electric
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field is reduced by an ‘“‘unread” atomic event.

Equation (47) can be interpreted as resulting from a
phase diffusion process, as can be shown by the following
argument. Let us first make the important remark that
in the case of an ‘“‘unread” atom, the second Ramsey zone
is obviously irrelevant. In this zone, the atoms have al-
ready interacted with the signal field and, if the informa-
tion resulting from their evolution after they have left the
cavity is not collected, it cannot change the knowledge
we have of the field [it is indeed easy to check that Eq.
(45) is not modified if just the first Ramsey zone is
present]. We will thus discuss the case of ‘“unread”
atoms as if the second zone was missing. Let us assume
that the initial field is in the state 3, c,|n ). Immediate-
ly after interacting with an ‘“‘unread” atom, the field is
left in the statistical mixture of the states corresponding
to the two possible atomic final states. The state correlat-
ed to an atom in level e is (except for a global phase)

W noR,)) =3 c,e "|n) . (48)

This equation shows that, if the atom were detected in
level e, the phase of the field would be shifted by €. This
phase shift can be interpreted as being due to a time-
varying index of refraction created in the cavity by an
atom in level e. On the other hand, the field would not be
dephased at all if the atom were detected in f so that
WY (noR,))=3,c,In). Since the atom is “unread,”
the field turns into a statistical mixture of the unper-
turbed and dephased fields, whose phase becomes uncer-
tain. Obviously, the cumulative effect of such “unread”
atoms amounts to a statistical diffusion of the signal-field
phase, so that the field amplitude decreases with time, as
expressed by Eq. (47).

A quite different scenario emerges if the final atomic
state is detected. In order to better grasp the physical
difference between the two situations, let us again consid-
er first the simpler arrangement where the second Ram-
sey zone is missing and the atoms detected right after
they leave the cavity. Immediately after an f or e state
detection, the field experiences an € or a zero phase shift,
but it remains always in a pure state [|¥(noR,)) or
|W'(noR,))]. Contrary to what happens when the
atoms are not monitored, neither the field amplitude nor
the phase uncertainty are changed in this process, which
may be visualized as a stepwise rotation of the field vec-
tor, which, for a monokinetic atomic beam, always has
the same value, even though it occurs at random times.
Of course, the average over many realizations of this ex-
periment will reproduce the results of the ‘“‘unread” case.
For each realization, the field will have at the same in-
stant of time a different phase, in such a way that the en-
semble average does go to zero as t — oo.

The situation is similar, although a little bit more com-
plicated, if the atoms are detected after the second Ram-
sey zone. The field being initially in a linear superposi-
tion 3, c,|n ), the state of the field after the measure-
ment is obtained by projecting the right-hand side of Eq.
(31) onto the corresponding eigenstates and normaliza-
tion. Omitting a global phase factor, we get, in interac-
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tion picture,

) =3 7z |In) . (49)

The + and — signs correspond, respectively, to a detec-
tion in f or e. We see that, in both cases, the field turns
into a superposition of the initial state and the state
which is phase shifted with respect to it by €. If the ini-
tial field has a well-defined phase, such a superposition is
known as a “Schrodinger cat state.” Measurement of the
next atom will further “split” each component of this
“cat” into two subcomponents, leading to a “second-
generation Schrodinger cat state” with four components,
one of which is dephased by 2e€ with respect to the origi-
nal field, and so on. In general, this process will go on,
until field components whose phases span the whole in-
terval from O to 27 are generated. This corresponds to a
complete loss of phase information, an obvious conse-
quence of the field reduction into a Fock state.

An interesting special case occurs when € is a rational
multiple of 7. Obviously, only a finite number of
different phase components are then generated by the
measurement process. The reduction into a completely
phase-indetermined Fock state cannot occur: the ‘“size”
of a measuring sequence with velocity-selected atoms cor-
responding to these special € values diverges, a result al-
ready briefly mentioned in Sec. IV C.

The evolution of the field is quite different from the one
in the case where the atoms are not read. In the absence
of dissipation, the field indeed remains in a pure state
and, although the phase uncertainty also increases (due to
the appearance of multiple phase components), there is
no loss of coherence between the remaining Fock states
(that is, the states which have not yet been decimated as
the successive atoms are measured). Note also that the
phase evolution is different from the one corresponding
to the case where the second Ramsey zone is missing: in-
stead of randomly jumping from a single value to another
one, the phase evolves now according to a dichotomic
process.

If the atomic beam has velocity dispersion, the above
discussion easily generalizes with the only difference be-
ing that the phase increments (ev,/v) become also ran-
dom quantities. The field ends up with zero coherence
whether the atoms are “read out” or not: if they are not
detected, phase diffusion occurs, and if they are continu-
ously monitored a Fock state eventually results from the
generation of ‘“multiple-component Schrodinger cats.”
In a realistic situation, some atoms are read and others
are “missed.” The phase diffusion then results from a
combination of the two effects discussed above. Note
that the singularities in the measuring sequence ‘“‘size” do
not occur in this case (see Fig. 8).

This analysis has shown that the DAP-QND process
applied to an initially *“pure state” field of the form (29)
leads, at its successive stages, to the preparation of
multiple-phase “Schrddinger cat states.” These states,
which have very intriguing nonclassical properties, will
be studied in detail in Secs. VI and VII.
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B. Numerical simulations of the Pegg-Barnett
phase evolution

In order to describe more precisely the evolution of the
field, we have to resort to numerical simulations. Since it
is not practical to plot all the matrix elements of p, we
compute instead a combination of off-diagonal density-
matrix elements representing the field phase distribution
I1(6). We adopt here the formalism of the phase opera-
tor recently analyzed by Pegg and Barnett [28] and we in-
troduce I1(6) as [29]

s . ,
M6)=lim —— 3 p, e~ (50)
s> 2T nn'=0 '

This distribution appears as a kind of Fourier trans-
form of the off-diagonal density-matrix elements con-
sidered as a function of n —n’. Without entering into all
the subtleties of the Pegg-Barnett theory, let us only re-
mark that II(0) has all the features required for a well-
behaved phase distribution. We notice, for example,
from Eq. (50) that if the field is incoherent, i.e., if
p=3,p(n)n){n|, then M(6)=1/2m, as should be ex-
pected. On the other hand, if the field is in a coherent
state |a) with a large average photon number |a|?, it is
easy to show that II(6) is a sharply peaked function cen-
tered at 0=¢, where ¢ is the phase of @, again an expect-
ed result.

I1(0) provides a simple visualization of the phase dur-
ing the QND measurement process. We merely have to

Phase probability distribution
o

JAN

(]

FIG. 11. Evolution of the Pegg-Barnett phase distribution
I1(6) in the same QND sequence as in Fig. 6. All atoms are
detected. II(0) for the initial coherent field is shown in (a).
Traces (b)-(f) correspond, as in Fig. 6, to the detection of 1, 3, 6,
10, and 15 atoms. The phase distribution, peaked around 6=0
in trace (a), converges to a uniform distribution in trace (f).
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use Egs. (35)-(37) to determine the evolution of the
coherences both in the “read” and ‘“‘unread” cases. The
result after each step is then plugged into Eq. (50) to yield
I1(6). We have represented in Fig. 11 the evolution of
the phase distribution for the measuring sequence whose
photon-number distribution is shown in Fig. 6. Figure
11(a) shows the single-peaked I1(6) distribution of the ini-
tial coherent state. Figures 11(b)-11(f) show the phase
distribution after 1, 3, 6, 10, and 15 atoms (all atoms are
read in this simulation).

The detection of the first atom transforms I1(6) into a
double-peaked  distribution  characteristic of a
Schrodinger cat state. Further atoms contribute to the
phase scrambling and the final Fock state whose photon-
number distribution is shown in Fig. 6(f) has a completely
undetermined phase, as expected [see Fig. 11(f)]. By
simultaneous inspection of the plots shown in Figs. 6 and
11 we clearly observe the loss of phase information corre-
lated to the acquisition of information on the field energy.

VI. GENERATION AND DETECTION
OF SCHRODINGER CAT FIELD STATES

We have shown in Sec. V that a single atom interaction
and detection stage of the DAP-QND scheme generally
transforms a pure state field into a linear superposition of
phase-shifted fields. In the remainder of this paper, we
intend to study in more detail this effect, to analyze the
intriguing properties of these states, and to propose ex-
periments in which these properties could be studied.

A. Interaction of a classical field
with a single atom

Let us assume that the initial field is in a coherent state
la) with the amplitudes c,(a) defined by Eq. (30). This
field has a Poisson photon-number distribution with an
average photon number 7Z=|a|2 It corresponds to a
“classical field” which can in practice be generated by
coupling an initially empty cavity with a classical current
source for a time 8¢,. From Egs. (30) and (49), we deduce
that the state of the field after detection of an atom of ve-
locity v, is the “Schrodinger cat state” (we assume here
®o=0):

la)t|ae ")
V2(1+Re{a|ae ~/€))
with the + and — signs corresponding, respectively, to a
detection in level f or e. The denominator in Eq. (51) en-
sures the state normalization. It depends upon the scalar

product of the two phase-shifted classical field states,
negligible as soon as 7 is large and € is not too small:

(51

¥ (a)) =

Re(alae 7€) =cos(7 sine)exp[7i(cose—1)] . (52)

In the DAP-QND method discussed above, the atomic
velocities are random and the “cat” prepared by a first
atom will usually be split into more components by subse-
quent atomic interactions. In order to generate and con-
serve these states for an extended period of time, it will
thus be necessary to couple the field to a single atom, or
else to make use of a velocity-selected beam of atoms
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(v =v,) and choose € values which are rational multiples
of . In this case, the phase diffusion process analyzed in
Sec. V cannot randomize the field phase. The simplest
situation, to which we will restrict our analysis here, is
v =vg,€=7. As we show below, the “first-generation
cat” remains in this case stable in the absence of relaxa-
tion.

B. Interaction with a “sequence” of velocity-selected
atoms producing an €= 7 phase shift

Assume that the atomic velocity is set to the value v,
and that the Ramsey fields are resonant (¢,=0), with
their amplitude set so that the atoms undergo exactly a
/2 pulse on the e — f transition in each zone. The cavi-
ty detuning & is also set so that the atoms undergo a
phase shift per photon € exactly equal to w. Equations
(24) then yield the following simple results for the transi-
tion amplitudes b, and b,:

by (n,v0;@o=0,e=m)=TF L(e ""+1) (53)

(upper and lower signs correspond, respectively, to f and
e).

The probability of detecting the atom in f(e) is thus
zero for n odd (even). For a field with a photon-number
distribution py(n), the probabilities of detecting the atom
in f or e are, according to Eq. (26),

M1 (po(n)vg;0o=0,e=m)= 3 poln), (54a)

nh even

M _(po(n),ve;00=0,e=m)= 3 poln) . (54b)

n odd
Obviously, these probabilities are both close to 0.5, as
soon as the width of the p,(n) distribution is large com-
pared to 1. If the first atom crossing the cavity is actually
measured in level f, the odd photon numbers are all de-
cimated in the photon distribution, which after the mea-
surement becomes

le, (a)]?
(+) () — n
(n)=———— (n even),
P S le,(a)l?
by (55a)
py (n)=0 (n odd) .

If, on the other hand, the atom is detected in level e,
the photon-number distribution turns into

e, (a)]?

TS e @)l

n odd

pi ) (n) (n odd) ,
(55b)
pi ' (n)=0 (n even) .

Thus, the interaction of a single atom, followed by its
detection, has transformed the initial Poisson distribution
into an even or an odd distribution in which only one
parity of photon number is left. In fact the measuring
process leaves the field in a pure state, with coherences
between the remaining Fock states. This state is obtained
from Eq. (51), in which we set e=:
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la)£|—a)
V2(1texp—2lal?)

(56)

W (@)=

Using Eq. (30), we retrieve indeed that the photon-
number distribution is even for the + sign, odd for the —
sign. Furthermore, in the form of Eq. (56), the existence
of coherences between the various Fock state components
is clearly apparent. The special “Schrodinger cat states”
obtained in this case are superpositions of classical fields
with opposite phases. These are highly nonclassical fields
whose properties have been studied recently in detail
[30,31]. Let us note only here that such fields have very
large fluctuations in the quadrature component, which
has the phase of the initial field, and very small fluctua-
tions in the other one.

Let us now consider the interaction of a second atom
with the W'X) (a) cats. The probability of detecting this
atom in level f or e is now given by Eq. (54), in which
Do(n) is replaced by p,(n), given by Eq. (55a) or (55b).
We find the remarkable result that the probability of
finding the atom in level e is zero for ¥.X)(a), and that
the probability of detecting the atom in state f is zero for
W.Z)(a). In other words, if the first atom has been
detected in level a (e or f), the atom which follows will,
with 100% probability be found in the same level. The
photon probability distribution will thus stay unchanged
in this second process. This holds of course for all subse-
quent atoms, provided they all produce the same e=m
phase shift per photon. In fact, the Schrodinger cat state
wave function itself is unaltered by the successive atoms.
Each component of the cat given by Eq. (56) is
transformed by a subsequent atom in the same
Schrédinger cat, so that the “first-generation cat”
remains globally invariant in the process. We thus see
that a beam of atoms with conveniently selected veloci-
ties produces a stable “Schrodinger cat state,” whose par-
ity is determined by the outcome of the first atomic mea-
surement.

Note also that it is not necessary to detect the atoms
with 100% efficiency to preserve the initially prepared
Schrédinger cat. Since the probability of finding the
atom in the other level is zero, we know for sure what the
outcome of the measurement of an unread atom would
have been and the system remains in the pure
“Schrodinger cat state” even if the atom escapes detec-
tion (we must only be sure of its velocity). This “stabili-
ty” property holds only if we can neglect cavity relaxa-
tion during the experiment. We will consider the effect of
relaxation on the monitored “Schrodinger cat” in the
next section.

Other mechanisms for generating ‘“Schrodinger cats”
of the electromagnetic field have been discussed in several
papers over the past couple of years [8,32,33]. Our
method has the merit of being conceptually very simple
and to result in the preparation of a Schrodinger cat
confined to a cavity, which could be monitored during an
extended period of time. The principle of the DAP-QND
scheme to prepare a stable Schrodinger cat can be sum-
marized in the following way. We have passed through
the cavity an atom in a quantum-mechanical linear super-
position of two states, one of which (e) dephases by 7 the



45 MANIPULATION OF PHOTONS IN A CAVITY BY . ..

field in the cavity and the other one (f) has no effect on
that field. As a result of coherent mixing of the atomic
states in the second Ramsey zone and detection, the
quantum-mechanical superposition is no longer carried
by the atom but by the field. In other words, the atomic
superposition has been replicated into a field superposi-
tion. We have obtained a field which has either the initial
phase, or a phase shifted by =, the either-or alternative
being of a quantum-mechanical and not classical nature,
since there is a nonvanishing coherence between the two
states. At the same time, each of the coherent states in-
volved in the Schrédinger cat state may be associated
with a classical field, so that we are able to get in this way
a quantum superposition of two classical states.

C. Detection of the Schrodinger cat state

How do we detect the Schrodinger cat state and
demonstrate that it indeed corresponds to a coherent su-
perposition of macroscopically different fields? The
method suggested in [32] consists in measuring two quad-
ratures of the field, of which one displays the existence of
two ‘“classical” field states and the other signals the ex-
istence of a quantum coherence between them. Field
quadratures could be measured by homodyning the field
under study with a reference field having either the phase
of the initial coherent state (in-phase quadrature) or a
phase shifted by 7/2 (out-of-phase quadrature). In the
cavity QED experiments discussed in this paper, a
difficulty arises from the fact that we do not have a direct
access to the fields: they are “trapped” in the high-Q
cavity and we can only infer their properties from the
detection of atoms coupled to the field during the cavity
crossing time. Furthermore, only one mode of the field is
available in the cavity at frequency o, which precludes
realization of the usual homodyne mixing scheme. The
method, however, can be adapted in the following way.
After the Schrodinger cat state has been prepared, the
cavity is coupled during a short time interval 8¢, to the
same classical source as the one which has initially been
used to inject the field |a), either directly or through a
m/2 phase shifter. A coherent field |a,) (the “refer-
ence”) is thus “added” to the ‘“‘cat state” in the cavity
mode. The amplitude of this reference can be adjusted by
varying 8¢,,. The resulting field in the cavity, immediate-
ly after this process, is

la+a,)t|—a+ta,)

VN ’
where WV is a normalization constant. Note that the addi-
tion process we are considering is quite different from the
combination of fields produced by a beam splitter, which
mixes together distinct modes coupled to its two “ports”
and introduces vacuum noise even in the absence of any
classical input field. We are describing here a much
simpler field amplitude superposition mechanism, which
affects only one mode of the field, coupled in succession
to two classical sources through a direct waveguide-type
connection, without any beamsplitter. The coupling is
implicitly assumed to be very weak, so as not to limit the
cavity Q factor. This superposition mechanism was in

¥ a,a,)) (57)
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fact discussed by Glauber in his pioneering papers on
coherent states [22], where he realized first that “the am-
plitudes of successive coherent excitations of the mode
add as complex numbers in quantum theory, just as they
do in classical theory.”

After this superposition, the photon-number distribu-
tion in the cavity has become

p‘i’(n;oz,a,)=—./1‘7I(n|oz+oz,)i(nl—a-i—oz,)l2 ) (58)

Let us consider separately the two quadratures. When
a and a, have the same phase, the photon distribution,
which we will note p{%)(n), appears as the sum of two
quasi-Poissonian distributions peaked around
n=la+a,|*> and |—a+a,|’. The interference term in
(58) is negligible provided the two Poisson distributions
do not overlap, which is the case as soon as |a,| >1. A
particularly interesting situation arises when a and a,
have the same amplitude. p{};)(n) then consists in a 8-
like peak at n =0 and a Poisson peak around n =4|a|%.
After interfering with the a, reference, the cavity field
has become a linear superposition of the vacuum field
with a classical field: the cavity is either “empty” or
“filled” with a coherent field. Coupling a Schrodinger cat
corresponding to two opposite phase fields having the
same amplitude with a classical current thus results in
creating a new Schrddinger cat, linear superposition of
two states with different amplitudes. The important
point for our purpose is to note that the existence of two
separate peaks in the in-phase sum field is the proof of
the existence of two classical fields in the cavity, prior to
the injection of the reference. It does not prove, howev-
er, that these two fields are in a coherent quantum-
mechanical superposition.

On the other hand, when a and @, are 7/2 out of
phase, a+a, and —a+a, are ¢ numbers with the same
amplitude and the interference term in (58) is important.
Assuming without loss of generality that o is real, we
now define

—ata,=pe*? (59)
with

p=Val+1a, P (60)
and

tand=|a,|/|a| , (61)

and we get after a straightforward calculation,
2 _ 2 2n
Pfoiu)t)(n)::'ﬁe 4 %!—(licosbz@) . (62)

pﬁfu’t)(n) exhibits a Poisson envelope with superimposed
modulations, signaling the coherence between the two
“classical” states. These modulations have opposite
phases for the + and — cases. We have displayed in
Figs. 12(a) and 12(b) the in-phase and out-of-phase
photon-number distributions in the -+ case, obtained
when |a|=|a,|=V"7 (7 photons in the initial coherent
field and in the reference).
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FIG. 12. Photon-number distributions obtained by superposing a reference field a, to the |a)+|—a) “Schrddinger cat” state
(lal=la,] =v7). (a) a, and a are in phase. The photon-number distribution is the sum of a §-like function at » =0 (height reduced
to save space) and a Poisson distribution centered at 7 =28. (b) @, and a are 7/2 out of phase. The photon-number distribution, cen-

tered at n = 14, exhibits oscillations with a period equal to 4.

The p!t)(n) and p{Z),(n) distributions can actually be
measured by detecting atoms sent through the cavity
after injection of the reference, in an experiment quite
similar to the one described in Sec. IVC. A complete se-
quence, including the preparation and the detection of
the Schrodinger cats, would consist in four successive
steps. (i) a coherent field |@) is injected into the cavity;
(i) a first atom is sent through the first Ramsey zone, the
cavity, and the second Ramsey zone, the fields in these
zones and the atom velocity being adjusted as described
in Sec. VIB. The atom is then detected in level f or e, re-
sulting in the preparation of one of the |W'X) (a))
Schrédinger cat states. (iii) The reference beam |a, ) is
then injected into the cavity, either in or out of phase
with |a). (iv) A “train” of atoms with random velocities
is then sent through the apparatus, their quantum states
and velocities being measured downstream. A value of
the photon number is obtained from this sequence.
Statistics of a large number of such sequences corre-
sponding to the same detection outcome for the first atom
and the same phase choice for a, allows us to reconstruct

the p(£)(n) and p{Z} (n) distributions. The presence of

two peaks in the p!=)(n) distribution, combined with os-
cillations in the p{2) (n) one, is the unambiguous signa-
ture of ‘“‘Schrodinger cat” state. We thus see that the
phase properties of the Schrédinger cat states can be ob-
served with the DAP-QND scheme, in spite of the fact
that this method gives direct information only on diago-
nal matrix elements of the field. The trick consists in
adding another field to the Schrodinger cat and detecting
the corresponding interference effects, again on diagonal
terms of the combined field density matrix.

The cavity must be allowed to relax between two
measuring sequences, so that each measurement starts
anew with the preparation of the same well-defined
coherent field. On the other hand, the Schrodinger cat
should not relax appreciably during steps (ii) and (iii) and
negligible relaxation of the photon-number distribution
should occur during step (iv) of each sequence. This im-
poses severe limits on the cavity Q factor, since each of
these steps should occur within a time much shorter than
the characteristic field energy decay time ¢, =Q /0. We
have seen indeed in Sec. IVD that the Fock states in-
volved in the field photon-number distribution decay
within a characteristic time ¢, /7, which is the upper

limit for the duration of step (iv). We will furthermore
show below that the macroscopic quantum coherences of
the Schrodinger cat decay also within the time ¢, /7,
which sets the same upper limit for steps (ii) and (iii).

VII. WIGNER REPRESENTATION

The Wigner distribution is particularly convenient for
displaying simultaneously the energy and phase informa-
tion of a single mode field in a very simple and graphic
form. It also allows for a simple analysis of the field re-
laxation. We rapidly recall here the Wigner representa-
tion formalism [34] and apply it to the study of the
Schrodinger cat state “experiment.”

A. General properties of the Wigner distribution

Let us recall some basic properties of the Wigner dis-
tribution of a field mode whose density operator is p(¢).
We define first the field symmetric and normally ordered
characteristic functions [34] as

Cs(A)={exp(Aa’—A*a)) =Tr[pexp(ra’—2*a)],
63)
C(A)={(exp(rat)exp(—A*a))
=Tr[pexp(Aa exp(—A*a)], (64)

where A is a c-number variable. Cg(A) and C,(A) are re-
lated by

Cs(A)=exp(—A2/2)Cp(A) , (65)

which simply follows from a well-known theorem about
the product of exponential operators.

The Wigner distribution W(a) of the complex ampli-
tude « is the real two-dimensional Fourier transform of
the symmetric characteristic function, defined as

W(a)=#ICXp(-AZ/Z)CN(Mexp(aK‘—a"}.)dzk .

(66)

The real and imaginary parts of a correspond to two
quadrature amplitudes of the field g and p:
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(a+a*), p =7 fiw

q= > (67)
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W (a), considered as a function of g and p, may be
viewed as a “probability distribution” for the field quad-
rature components in phase space. Of course, ¢ and p
cannot be simultaneously determined with infinite pre-
cision due to uncertainty relations, so that W(q,p) is only
a quasidistribution which can take nonpositive values for
limited ranges of g and p.

It may be useful to express W in terms of the matrix
elements of p in the photon-number representation:

172
—2 _—2ap S (_1y7()— m!
Wia) e Re n,m2=0( ™2 8”"‘)[11!
X(2a)" "L ™(4lal®)p,, . ]
(68)
where
- - n! »
n—m .y — _ 69
L7 ™(x) p§0( l)p(n—m+p)!(m—p)!p!x (69)

is a Laguerre polynomial. Equation (68) is a generaliza-
tion of a formula found in the literature for fields
represented by a diagonal matrix in the Fock state basis
[35,26].

Finally, the Wigner representation is very convenient
to study the relaxation of a field mode initially described
by the density matrix p(0). A straightforward calculation
shows that if p(z) evolves according to Eq. (42) with
ny, =0 (relaxation produced by a T =0 K reservoir), then
C y(A,t) obeys the following differential equation [34]:

A2 paxd

9, 1 Ax
anr

a2t

Cu(A,1)=0, (70)

oA

cav

whose_sc}%ution is obtained by replacing p by p(0) and A
by Ae ' in Eq. (64). Using Eq. (66), we get

Wla,t)= f e —IMZ/ZTr[ p(0)exp(Ae _tm“"aT)

—t/2t

Xexp(—A*e “a)]

X e —a*rg2y (71)

B. Wigner representations of special field states

Simple analytical expressions for the W distributions
associated to states of particular interest in this study are
easily obtained from the above equations, the correspond-
ing distributions being conveniently represented in a
three-dimensional g,p,z space by the z — W(q,p)=0 sur-
face. The n-Fock state Wigner distribution is directly de-
duced from (68):

W(a)=(—1 >"%e—2'a'2ﬂn°>(4|a12) (72)

and is graphically represented in Fig. 13(a) for n =5. The
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FIG. 13. Three-dimensional representations of Wigner distri-
butions for special fields. W is plotted along the vertical axis
and the field quadratures g and p along the two orthogonal hor-
izontal axes (“back” to “front” and left to right, respectively.)
(@) Fock state n=S5; (b) coherent state with 7=5; (c)
Schrédinger cat state |W."(a)) with a=V5.

cylindrical symmetry of the Wigner surface corresponds
to the lack of phase information in this state. The num-
ber of circular intersections of the surface with the (g,p)
plane corresponds to the number of photons in the state.
From Egs. (64) and (66) the Wigner distribution of a
coherent state a is readily obtained by making use of the
relation ala) =ala):

2 —2la—ay?
~e o

T

W(a)= (73)
It is represented by a Gaussian “bump” centered around
a, [Fig. 13(b)]. As for the Schrodinger cat states with the
+ or — sign [Eq. (56)], they are associated with the fol-
lowing distributions:

Wi(a): 2_2‘(1 |2
m[lte 77°

)

*2\(1—11012 ~2|a+a0|2

X{e +e

+2e 2o cos[4 Im(aa?)]} , (74)

whose expressions are also easily derived from Egs.
(64)—(66). The Wigner surface corresponding to the +
sign Schrodinger cat is represented in Fig. 13(c). The first
two Gaussians on the right-hand side of Eq. (74) corre-
spond to the two “classical” fields, dephased by 7 from
one another. They are represented by two ‘“bumps”
symmetrical with respect to the origin. The third contri-
bution on the right-hand side is an interference term, as-
sociated with the quantum coherence between the two
states. It is a Gaussian centered around the origin,
modulated by a cosine with a frequency of oscillation
proportional to the amplitude of the field. The fringe
lines [Im(aagd)=const] are parallel to the a, direction,
i.e., to the line joining the center of the two Gaussian
“bumps.” The — sign Schrodinger cat has the same dis-
tribution, with a 7 shift in the phase of the fringe pattern.
Wigner representation of Schrodinger cat states has been
discussed in [30,31].
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C. Free relaxation of the Schrodinger cat state

We briefly discuss here the evolution of a Schrodinger
cat state relaxing freely in a cavity. Similar treatments of
this problem can be found in [30,31]. We include this dis-

cussion here for sake of completeness, in view of the com-
J

+2¢ ~2lecos[4 Im(aa e

When t=0 this expression reduces to (74). For
t <<t.,,, we see that the central peak, associated with the
coherence between the two states, decays as
exp(—2|ay|*t /t.,, ). The rate of decay of the coherence
is therefore proportional to the intensity of the initial
field in the cavity. At the same time, the two other peaks
approach the origin with a rate equal to 1/2¢,,. As
t — oo, the distribution (75) approaches a single Gaussian
around the origin, which is just the Wigner distribution
for the vacuum state. The relaxation of the Schrodinger
cat state is shown in Fig. 14, where the Wigner distribu-
tion is plotted at various times following the preparation
of the state (to save space, only the positive part of W is
shown). The initial state is a coherent superposition of
two opposite classical fields with n = |ay|>=5 [Fig. 14(a)].
We notice that after a time of the order of ¢_,, /10, the
central feature of the distribution signaling the
Schrodinger cat’s coherence has appreciably decreased
while the position of the two bumps has practically
remained unchanged [Fig. 14(b)]. After a time ¢,, /3, the
distribution has evolved into a nearly incoherent superpo-
sition of two classical fields [Fig. 14(d)], which is to a
good approximation represented by the density matrix

p=1la M a,l+—a)—a,l) (76)

{ exp( —20a—age |2 +exp(—2|latage

—1/2
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parison we make in the next section with a relaxing
Schrodinger cat undergoing a continuous interaction
with a beam of atoms.

Starting from the general Eq. (71), we easily find for the
time evolution of a Schrddinger cat state subjected to re-
laxation at T =0 K:

t/ZtCaV‘Z)

—t/2t

Jexp[ —2]apl(1—e )]} . (75)

[

. —t/2t
with a, = age o,

Finally, the distribution turns into the one correspond-
ing to the vacuum state [Fig. 14(h)]. The fast decay of
the Schrodinger cat under the effect of relaxation is a
well-known feature of macroscopic quantum coherences.
It restricts the practical observation of such coherences
to relatively small systems for which n is not too large.
The Schrodinger cat is generated in a time L, /v, of the
order of 1073 s. The Schrddinger cat’s detection experi-
ment involves the injection of a reference field a, in the
cavity, which can be performed in a time of the order of
1073 s, or even shorter. If the cavity-damping time is of
the order of 0.1 s, a Schrodinger cat state with n as large
as 100 could be generated and observed. These values of
n are markedly higher than those in other proposals of
experimental realizations of optical Schrodinger cats.

D. Evolution of Wigner distribution
under continuous interaction with atoms

We finally discuss the effect of continuous monitoring
on a relaxing Schrodinger cat. We assume as in Sec. VI
that the field interacts with a beam of monokinetic atoms,
each of which imparts, when in level e, an e=7 phase
shift to the field. The first atom prepares an initial
Schrodinger cat state, for example the even-photon-

FIG. 14. Evolution of the positive part of the Wigner distribution of a freely relaxing Schrodinger cat state (a=V'5). The quanti-
ties being plotted along the three axes are the same as in Fig. 13. (a) Initial field at ¢ =0; (b)—(h) field at times t =1,, /10, t =t,, /5,
t=tcav/3’ t =tcav/27 t =tcav’ t =2tcaw and t = oo.



45 MANIPULATION OF PHOTONS IN A CAVITY BY ...

number one. As this cat relaxes in the cavity, it continu-
ously interacts with subsequent atoms, all of which are
supposed to be detected. The simulation of this experi-
ment is straightforward. We use in the computation the
Fock state representation of the density matrix, with Egs.
(35) to determine the evolution of the density matrix in-
duced by measurements and Eq. (43) to describe field re-
laxation between consecutive atoms. Equation (68) is
then used to get the Wigner distribution of the field at
any time. Figure 15 shows the evolution of this Wigner
distribution for one realization of the simulation. The in-
itial field is again a classical one with 7 =5. The atoms
are supposed to cross the cavity at a regular rate, the cav-
ity relaxation time corresponding to 50 atoms. Several
features are different from the ones displayed in Fig. 14.
The most striking is the fact that the Schrédinger cat’s
coherence survives much longer, practically until the last
stage of the field decay. Note also that, from time to time
(after atom number 3,6,14, . . . in this particular realiza-
tion), the parity of the Schrodinger cat abruptly switches
from + to — or from — to + (this is revealed by the
change of the phase of the interfering pattern in the
Wigner distribution central feature). These results are
easy to explain qualitatively. Immediately after the first
atom detection (in level f in this particular realization),
the odd photon numbers have been completely
suppressed. Between the first and the second atom, the
relaxation had the effect of slightly repopulating these
photon numbers. The probability of detecting the second
atom in level e [given by Eq. (54b)] was thus not zero,
though it remained very small. This atom therefore had
a probability close to unity of being detected in the same
level f as the first one, which has actually been the out-
come of this realization. As a result, the odd-photon-
number states have been suppressed again and the initial
Schrodinger cat state restored.
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Since relaxation slightly populates the other parity
states between detection events, an atom is eventually
detected in the other level (atom number 3 in the realiza-
tion shown in Fig. 15). Immediately after this event, the
field “jumps” into the “—” cat state, until another event
of the same kind brings it back to the “+ state (after
atom number 6 in this realization), and so on. In other
words, each detected atom refreshes the coherence be-
tween the two classical fields by destroying photon num-
bers of a given parity. Most often, it maintains the
Schrédinger cat’s parity, but from time to time it induces
it to “jump” from one parity to the other as the photon
number suddenly switches from even to odd or back.
These measurement-induced effects superimpose to the
classical field relaxation, which, at the rate 1/¢_,,, brings
the field down to the vacuum state. Here again, the be-
havior of a “freely” decaying Schrodinger cat is repro-
duced by statistical averaging of a large number of such
realizations. Since the precise time of a jump between +
and — states is random, such an averaging kills very fast
the macroscopic coherence between the two classical
components and the results shown in Fig. 14 are
recovered.

The mechanism by which an atom measurement pro-
cess refreshes the statistical “purity”” of a quantum field is
easy to understand in another way. Assume that the
second atom is sent through the system after a time of the
order of ¢, so that the initial Schrodinger cat has de-
cayed to the statistical mixture described by Eq. (76).
This second atom has then a 50% probability of being
detected in either state e or f. If it is actually observed in
f, each of the two components a, and —a, of the statisti-
cal mixture (76) are transformed into the same state
la,?+1—a,). As a result, the statistical mixture has
been turned into a pure state Schrodinger cat again. The
same is true if the atom is observed in level e (the

FIG. 15. Evolution of the positive part of the Wigner distribution of a relaxing Schrédinger cat continuously interacting with a
monokinetic beam of atoms (e=1). The quantities being plotted against the three axes are the same as in Fig. 13. (a)—(g) Fields after
1, 2, 3, 6, 14, 50, 100, atoms, respectively; (h) field at t = . Atoms are supposed to be regularly injected in the cavity and all detect-

ed. t.,, corresponds to the passage of 50 atoms.
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Schrodinger cat |a,)—|—a,) then being created). It
may at first sight seem paradoxical that an irreversible
collapse of the system wave function induced by the atom
measurement restores ‘‘coherences” in the system. The
paradox comes from the fact that “coherence” has
several meanings in this problem. The macroscopic
coherence between the two classical fields has been rees-
tablished, but no coherence between Fock states has been
created in the process. It should be noted indeed that all
quantum coherences are not killed at the rate 77 /2¢_,, by
the relaxation process. In fact, the “incoherent” super-
position of Eq. (76) corresponds to an ordinary Poisson
distribution for the photon number with all p, ,- coher-
ences corresponding to n —n’ odd suppressed, while all
the coherences p, , associated to n —n’ even are still
large. The effect on this field of an atom measurement in
level f is to kill the odd photon numbers in the distribu-
tion, without affecting the n —n’ even coherences. The
result is to recreate an even-photon-number Schrédinger
cat, without actually producing any p,, coherence
which was not already present in the field.

VIII. CONCLUDING REMARKS

The experiments proposed in this article link together
the concepts of cavity quantum electrodynamics and
atomic interferometry, two rapidly expanding domains in
quantum optics. We have shown that a field stored in a
confined space can be continuously monitored and mani-
pulated by detecting interferences on nonresonant atoms
coupled to that field. No energy is exchanged with the
field, whose state is modified only through an
information-gathering process.

In our previous work [5] and in this paper we have
chosen to make use of the Ramsey fringes technique in
order to produce and detect the atomic interferences.
The method can obviously be generalized to other in-
terference schemes. In an atomic Young’s double-slit ex-
periment [36] a cavity containing the field to be measured
could be placed in front of one of the slits, resulting in an
n-dependent shift of the fringe pattern, whose detection
would provide the same information as the one obtained
from the Ramsey pattern described here. Another vari-
ant, proposed in [37], consists in detecting the dipole-
force-induced Bragg scattering of an atomic beam on a
standing-wave cavity mode. Also somewhat related to
the present work are the recent proposals which suggest
performing QND measurements of photons by detecting
electron interferences in semiconductor microstructures
[38] or in Aharonov-Bohm interfering designs [39].

The Rydberg atom-microwave cavities combination
has many attractive features. One of its assets is the very
long cavity-damping time, permitting us to gather the in-
formation and to manipulate the field before it decays. In
this respect, the experiments proposed here appear as
“photon trap” experiments, ‘“dual” of the ion trap experi-
ments in which material particles are manipulated by
means of fields. Realization of these experiments would
constitute a paradigm of measurement, testing the basic
postulates of quantum mechanics. A variety of “gedank-
en experiments” on a quantum field become possible:
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demonstration of photon jumps, generation of coherences
between macroscopically different states, inhibition of
field-coherent evolution under continuous observation
(quantum Zeno effect).

For these experiments, it is important to be able to esti-
mate in detail the effect of the imperfections of a real ex-
periment. Our system being entirely calculable, the
influence of velocity measurement uncertainty, finite con-
trast of the fringe signal, and noise of the atomic detec-
tion counters, can be included in the numerical simula-
tions in a detailed way. This discussion is planned to be
published in a forthcoming paper.
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APPENDIX

We derive here the expressions of the b, (n,v;@g,€) am-
plitudes. We assume that the cavity field contains » pho-
tons. In the interaction representation with respect to
the unperturbed atomic and cavity field Hamiltonians,
the atom plus field system wave function can be expanded
as

|platom*Reld)) =, (n,t)le,n ) +b,(n,0)| f,n ), (A1)

where b,(n,t) and b (n,t) are time-dependent functions
whose evolution is due only to the effects of the auxiliary
fields in R| and R, and to the dispersive interaction be-
tween the atom and the field in the cavity. The initial
conditions for these amplitudes, before the atom enters in
zone R, are

b.(n)=1, bs(n)=0. (A2)

We assume for the sake of simplicity that the auxiliary
field is uniform in R, and R, with a Rabi frequency Q,.
We call 8L the length of each zone, which is crossed by
an atom with velocity v in a time 7=38L /v. We also sup-
pose that the detuning w, —w, is small compared to 1/7,
so that it can be neglected in the equations describing the
atom evolution in the two Ramsey zones.

During the time the atom crosses R, the amplitudes
b,(n,t) evolve according to the coupled equations:

. _q, . Q,
by(nt)=—=="b,(n0), by(m)==Tb(n,) (A3

which, taking into account the boundary conditions (A2),
admit the following solutions at time :
Q,7

2

After the atom has crossed the cavity containing n
photons, b, has been phase shifted while b, has remained
unchanged. The initial conditions for the atomic ampli-
tudes before the atom enters zone R, are thus

Q.7
be(n)‘—‘cos—z—, bs(n)=—sin (A4)
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rT  —inevy/v . QrT
e , b/n)=—sin— .
2 f( ) n 2

In the second zone, these amplitudes evolve according to

b, (n)=cos (A5)

r

. Q iQavn /v
bf(n,t)=—7e 0%/ b,(n,t),

0 (A6)
b, (n,t)=—re 9% (n,1) .
e ’ 2 f ’

These equations differ from Eq. (A3) by complex ex-
ponential factors describing the phase shift between the
auxiliary field and the atomic coherence during the flight
time of the atom between the two zones. The evolution
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of these amplitudes during a time interval 7 form their in-
itial values given by Eq. (A5) is straightforward to com-
pute. After zone R,, the system state is described by

Q7 —inevy /v Q7 —;
. r i@gvy/v
b,(n)=cost——e 0" —gin2——¢ PO%07"
2 2 A7
i(pg—nevy /v ( )

be(n)=—3sinQ,7(1+e ).

We finally assume that , 7= /2 when the atomic ve-
locity is v, and we immediately obtain expressions (24a)
and (24b) for the final amplitudes b,. Of course, these
amplitudes depend explicitly upon the arguments n, v, @,
and €.
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FIG. 13. Three-dimensional representations of Wigner distri-
butions for special fields. W is plotted along the vertical axis
and the field quadratures ¢ and p along the two orthogonal hor-
izontal axes (“back” to “front” and left to right, respectively.)
(a) Fock state n=5; (b) coherent state with 7=35; (c)
Schrodinger cat state WL (@) with a=V/5.



FIG. 14. Evolution of the positive part of the Wigner distribution of a freely relaxing Schrodinger cat state (@=V'5). The quanti-
ties being plotted along the three axes are the same as in Fig. 13. (a) Initial field at t =0; (b)—(h) field at times t =1, /10, t =t,, /5,
=t /3t =1 /2,1 =1, 1t =2t,,and t = co.



FIG. 15. Evolution of the positive part of the Wigner distribution of a relaxing Schrddinger cat continuously interacting with a
monokinetic beam of atoms (e =7). The quantities being plotted against the three axes are the same as in Fig. 13. (a)—(g) Fields after
1, 2, 3, 6, 14, 50, 100, atoms, respectively; (h) field at t = coc. Atoms are supposed to be regularly injected in the cavity and all detect-
ed. t.,, corresponds to the passage of 50 atoms.



